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Bound and estimate for the maximum compression of single shocks
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We derive that the compression for any single shock has an upper bound of 7. This is in the case of shocking
from any initial state except gaseous densities with temperatures such that a significant fraction of the electrons
are bound. For shocks in condensed material initially near ambient, we present a simple analytic estimate for
the maximum compression as a functiorpgf(initial density), A (atomic weight, Z (atomic number, andAE
(the sum of cohesion, dissociation, and total ionization enerdi®4063-651X99)07803-4

PACS numbegps): 62.50+p, 52.35.Tc, 51.36xi

INTRODUCTION namic equation of stat®(p,E) and the energy jump con-
straint
For any material that is compressed by a shock wave, one
might suppose that increasing the pressure of the shock wave E_ Eo=£ (P+Pg)(Lpo—1lp). 1)
to arbitrarily high values will produce an arbitrarily large 2

compression. This is not true, and in particular one can show ] ] ] ] ]
that for infinitely strong shock waves in any substance theréi€reP is the pressure is the density, and is the internal
is a compression of exactly fourfold from the initial density E"€r9y Per gramPy, po, andE, represent the same, but are

in front of the shock to the final density behind the shockor the initial staie /Of thedHugo_niotEculrve. We define the
Thus, in defiance of the high pressure, the compression fgompression ag = p/po and rewrite q(1) as
limited by the high temperatures produced by shocks. For n=4+[2p(E—Eg)—3(P+Pg)]/(P+Py). 2

condensed materials shocked from near ambient, the maxi-

mum possible compression attainable by a single shock is \ye now assume that the virial theorem is exact for the
greater than 4 and occurs at some finite pressure, the particdyuation of statg2]; i.e., if E=K+ U, whereK is the aver-
lar values depending on the specific material and on the iniage kinetic energy per gram atdlis the average potential
tial density and temperature. This overshot of the fourfoldgnergy per gram, theR/p=2K/3+ U/3. (We are consider-
limit is caused by the “softening” of the material when en- jng here the case of physical interest, namely, the charge-
ergy is drained into internal degrees of freedom such as iReytral, quantum Coulomb system.Substituting into Eq.

In this Brief Report we derive from general arguments an
upper bound on the maximum compression attainable by a 7= np— 3Po(1+ )/ (P+Pg)< ny, 3
single shock in any material from any initial state except
those with gaseous densities and a significant number ofhere 7,=4+p(U—-Ug)/(P+Py). If U=<Uy, then 7
bound electrons. We also obtain an estimate of the maximuns »,<4. If U=U,, then we rewrite Eq(3) as

compression in the case of condensed materials shocked
from near ambient. 7<1p=4+3[1+2Ks/Us+3Po(1/p+1lpo)/Us], (4)

whereK;=K—-Ky andUgs=U—U,.

For classical system& =0 because the average kinetic
energy is linear in temperatuf& This is not the case in

A Hugoniot curve is a curve in thermodynamic parametergeneral for a quantum, charge-neutral, bare Coulomb system.
space that is the collection of final states behind a shockor low densities where atomic states are a good approxima-
as the strength of a shock is varied for fixed initial statetion for the electrons, the electrons ionize from localized
Hugoniot curves, along with isotherms, isobars, and isenhigh-kinetic-energy states to low-kinetic-energy extended
tropes, for example, are curves specified on the equation-ofree states. Thus the average kinetic energy drops as the tem-
state surface by constraints such as requiring that the tenperature rises as long as there is a significant fraction of
perature, pressure, or entropy be constant. It is just that thelectrons remaining to be ionized. This is nothing more than
constraint for the Hugoniot curve is not as simple as keepinghe uncertainty principle with the electrons going from a
a standard thermodynamic variable fixed. For weaker shocksmall to a big box. The situation just discussed is not the case
with little entropy production, the Hugoniot curve is approxi- for densities higher than gaseous. There, the electrons do not
mately an isentrope. For shocks with significant entropy prohave an extreme change in localization in going from low to
duction, the Hugoniot curve in pressure-density space itigh temperatures. Thus, for quantum systems, \veiy rea-
stiffer than an isentrope. The principal Hugoniot curve is thatsonable thak =0 whenUs=0 if »=7—¢ (¢>0) for a
one with ambient as the initial stafé]. material shocked from densities greater than gaséMed-

Any Hugoniot curve is determined from the hydrody- els support this positioh. Then, from Eq.(4), n<n,<7.

UPPER BOUND
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Thus we conclude that the compression along a single-shockhis is our estimate for the maximum compression along the
Hugoniot curve for any material cannot exceed 7 for a broagbrincipal Hugoniot curve.

class of initial shock states.

ESTIMATE FOR THE PRINCIPAL HUGONIOT CURVE

We now look to the principal Hugoniot curve, whelfg
=0. We assume that we are shocking frdrs 0. (The dif-

Equation (8b) can be simplified further if one neglects
cohesive and dissociation energies. We fit to the total ioniza-
tion energies of Moordthrough Ca [4] to estimate that
AE=13.62%>*eV per atom. Thus

C=0.011AZ*[ po(1+2)4]. (80

ference between zero and room temperature is small when

we are looking for estimates of the maximum compress-

ion.) From Egs.(3) and(4), we find that

n=4+3/(1+2K/Uy). (5)

It is convenient to defin®=U4/(2AE), where, for the prin-
cipal Hugoniot curveAE= — Ej and is the sum of cohesive,
dissociation, and total ionization energies. Then

n=(7TY+4K /AE)/(Y+K/AE). (6)

CONCLUSIONS

The estimates of Eq$8a)—(8c) and an upper bound of 7
are our results. The only existing data that are a strong test of
our 7, expression are for AI5]. In that case,,~5 and
that value agrees well with Eqé8). One has available more
terms in the expansion, E¢7a. We have extensively stud-
ied these terms and found that they do not influence our
estimates at all. We have also extensively worked with the
series, Eq(7a), using Padepproximants. Again, there was

From the exact high-temperature series for the equation d10 significant influence. We feel Eq&8a—(8c) are quite a

state of any elemental materi@], we obtainY as an exact
series in IK,. (We are thinking ofK as the independent
variable) All that we need is

Y=1+aa'?+:--, (7

with
a=—e3(1+2)%(L/IA)%/AE (7b)

and
a=3mZ%py/(2Ky). (70

In these equationd, is Avogadro’s number ane is the
electron charge. Thea'? originates from the Debye-Htkel
term in the hight expansion.

We substitute Eqg7a—(7¢) into Eqg.(6) and solve for the
maximum compressioty,,. The result is

7=4(1+7C)/(1+4C), (8a)
with

C=2(AE/Z)3A%[81e®m(1+Z)*L%po]. (8b)

good approximation ofy,, .

In a previous discussion of the high-pressure Hugoniot
curve[6], we presented the relatioss-1+ y/2 and n,,=1
+2/v, wheres is the derivative of the shock velocity with
respect to the particle velocity ang=1/p 9P/JE|, is the
Gruneisen parameter. These relations are exact at any point
on the Hugoniot curve where the density derivative of the
pressure is infinite. The first is also approximately true for
any given material over a very large region of the Hugoniot
curve, including particle velocities from about 10 to 100
km/s. In such a region it is universal the4=1.2 and thus
v~0.4. It is above this very linear region that the Hugoniot
curve becomes steeper and in pressure-density space attains
maximum compression. Thers,will be a little larger than
its value in the linear regionWe should clarify that there
are two linear regions in the shock-velocity—particle-velocity
Hugoniot curve. One is from 0 to about 3 km/s for the par-
ticle velocity, and the other, which is the one of interest, is
from about 10 to 100 or more km)s. From our approxima-
tion of the maximum compression and the above two rela-
tions, we can obtain estimates sfand y at the maximum
compression point. The ultimate limiting values for shocks
of infinite strength arepy=4, s=4/3, andy=2/3.
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